Tetrahedron Vol 44, No 7, pp 2063 to 2066, 1988 Printed in Great Britain.

PENTATHIOMONOORTHOOXALATES^x

Pál Herczegh, Martina Zsély and László Szilágyi⁺

Research Group of Antibiotics, Hungarian Academy of Sciences, +Institute of Organic Chemistry, L. Kossuth University H-4010 Debrecen, HUNGARY

(Received in UK 29 December 1987)

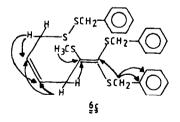
<u>Summary:</u> Reaction of trialkyl trithioorthoformate anions with carbon disulphide and subsequent methylation of the products gave methyl trisalkylthio-dithioacetates (pentathiomonoorthooxalates). Attempted Diels-Alder reaction of this new species gave rise to open-chain hexa-1,4Z-dienes <u>6a-c</u> instead of the expected thiopyran adducts.

Our synthetic studies required thiopyrancarboxylic derivatives of type \underline{la} , having the carboxylic function in a masked form permitting carbanionic manipulations on the heterocyclic ring. Since such unsaturated thianes can easily be prepared using hetero-Diels-Alder reactions of thiocarbonyl compounds¹⁻³ we chose a properly functionalised dithiocarboxylate for this purpose. As a trithioorthoester function satisfies the conditions for the masked, easily regenerable carboxyl we thought that a tris-alkylthio-dithioacetic ester $\underline{2}$ (a pentathiomonoorthooxalate) could be the compound of choice.

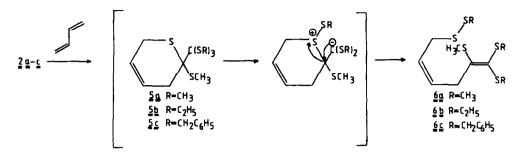
 $S_{R}^{(SR)_{3}} = \frac{2}{2} R^{-R-CH_{3}} + \frac{1}{2} R^{-CH_{3}} +$

We have prepared three derivatives of $\frac{2}{2}$ using methyl, ethyl and benzyl trithioorthoformate anions obtained from the appropriate thioorthoformates by lithiation⁴. Reaction of these anions with carbon disulphide and subsequent methylation with methyl iodide afforded the expected products $\underline{2}\underline{2}\underline{-\underline{2}}$ as unstable oils.

$$(RS)_{3}CH \xrightarrow{n-BuLi} (RS)_{3}C \xrightarrow{CS_{2}} (RS)_{3}C \xrightarrow{CH_{3}I} (RS)_{3}$$


* Dedicated to Professor Rezsõ Bognár on the occasion of his 75th birthday.

In the case of $\underline{2c}$ we could isolate a crystalline side product from the reaction mixture. The structure of this compound was deduced completely from NMR measurements. The ¹H-NMR spectrum indicated the presence of two methylene groups and two isolated CH-protons with distinctly different chemical shifts instead of the expected three CH₂S signals. The dithiocarboxylate group was identified on the basis of a quaternary carbon resonance at 233.56 ppm, characteristic⁵ for the C=S in such systems. On the other hand, the chemical shift of the CH-carbon at 52.19 ppm is characteristic for trithioorthoformates⁶. Consequently, the structure of $\underline{3}$ was inferred from the evidence above. The correctness of this assumption was demonstrated by selective INEPT measurements⁷. Pathways, indicated be arrows of selective ¹H-¹³C magnetisation transfer experiments permitted an unambigous selection of structure $\underline{3}$ as the correct one among the six alternative structures that are also compatible with the ¹H- and ¹³C-NMR shifts.


Formation of $\underline{3}$ can be attributed to a concurrent deprotonation of a benzylic methylene or a rearrangement of the intermediate orthoformate anion to give $\underline{4}$. Existence of $\underline{4}$ can be explained by steric compression of the 'ribenzyl trithioorthoformate anion.

In order to study the reactivities of $2\underline{a}-\underline{c}$ they were reacted with 1,3butadiene at 100°, but unfortunately instead of the expected $\underline{5}\underline{a}-\underline{c}$ another type of compounds have been obtained. Structure elucidation of these products required extensive NMR studies. The ¹H-NMR spectrum of <u>6c</u> displayed two groups of SCH₂ singlets in a 2:1 ratio at 4.00 and 3.57 ppm, respectively. This is clearly incompatible with structure <u>5c</u>. The ¹³C-NMR data were also at variance with this structure since two quaternary carbon resonance occurred at 140.84 and 135.96 ppm instead of around 60 ppm expected for <u>5c</u>. This indicated the presence of two quaternary sp²-carbons. Structure <u>6c</u> could than be unequivocally established from a series of selective INEPT measurements⁷ as indicated in the scheme below.

The lack of the long-range connectivity across the sulphur atom with SCH₂ protons at 3.57 ppm establishes the disulphide bond. $\underline{62}$ and $\underline{6b}$ displayed ¹H- and ¹³C-NMR spectra very similar to those of $\underline{6c}$, in accordance with the analogous ketene dithioacetal structure.

We could not isolate a normal Diels-Alder adduct from the reaction mixtures because under milder conditions no reaction can be observed. However, the intermediacy of 5a-c must be considered. We postulate that because of the high steric compression in the trithioorthoester grouping of the presumed $\underline{1}\underline{b}$ one of the alkylthic groups migrates onto the sulphur of the ring, and the decomposition of the intermediate thiasulphonium derivative leads to compounds $\underline{6}\underline{a}-\underline{c}$.

EXPERIMENTAL

<u>General methods</u>: Solutions were concentrated at 40° (bath) at ca. 17 mmHg. Chromatography was performed on Kieselgel 60. H- and ¹³C-NMR spectra were recorded with a Bruker WP-200 SY spectrometer for solutions in CDCl₃. Mass spectra were obtained by using a VG-7035 GC/MS/DS instrument (70 eV).

<u>Preparation of pentathiomonoorthooxalates</u> $2\underline{a}-\underline{c}$: The appropriate trithioorthoformate^{8,5} (1 mM) in dry tetrahydrofuran (5 mL) was treated with 1mM of noutyllithium (1.6 M solution in hexanes) at -78° under nitrogen athmosphere. After 15 minutes 1.1 mM of carbon disulphide was added and the mixture was stirred for 30 minutes while the temperature was allowed to rise to -20° . Then methyl iodide (1.1 mM) was added and stirred for another 1h at the same temperature. After bringing to room temperature the solvent was evaporated, the residue was extracted with ether, the etheral extract washed with water, dried (MgSO₄) and evaporated to give the crude product as a red oil. This was chromatographed using a hexanes-CHCl₂ 8:2 mixture as eluent.

<u>Methyl tris-methylthiodithioacetate</u> 2a. Yield: 71.8 %. ¹H-NMR (200 MHz, CDCl₃) 6 2.14 (s, 9H, $3xSCH_3$); 2.63 (s, 3H, SCH₃) ppm. <u>MS m/e</u> 244 (M⁺); 197 (M⁺-SCH₃); 153 (M⁺-CSSCH₃); 91 (M⁺-C(SCH₃)₃). <u>Anal</u>:Calc. for C₆H₁₂S₅: S, 65.58; Found: S, 65.23.

<u>Methyl tris-ethylthiodithioacetate 2b</u>. Yield: 71.8 %. $\frac{1}{H-NMR}$ (200 MHz) & 1.28 (t, 9H, 3xSCH₂CH₃); 2.61 (s, 3H, SCH₃); 2.71 (q, 6H, 3xSCH₂CH₃) ppm. <u>MS m/e</u> 286 (M⁺); 225 (M⁺-SCH₂CH₃); 195 (M⁺-CSSCH₃). <u>Anal.</u>: Calc. for C₉H₁₈S₅ : S, 55.95; Found: S, 55.81.

<u>Methyl tris-benzylthiodithioacetate 2c</u>. Yield: 60.8 %. ¹H-NMR (200 MHz) & 2.60 (s, 3H, SCH₃); 3.68 (s, 2H, SCH₂); 3.98 (s, 4H, 2xSCH₂); 7.1-7.3 (m, 15H, aromatic) ppm. <u>MS m/e</u> 473 (M⁺); 381 (M⁺-CSSCH₃). <u>Anal.</u>: Calc. for C₂₄H₂₄S₅: S, 33.91; Found: S, 33.68.

 $\begin{array}{c} \underline{\mathsf{Methyl bis-benzylthiomethylthio-phenyldithioacetate 3. Yield: 23.0 \$. } \underline{\mathsf{H-NMR}} \\ (200 \text{ MHz}) & \delta 2.51 (\texttt{s}, 3\texttt{H}, \texttt{SCH}_3); 3.66 (\texttt{s}, 2\texttt{H}, \texttt{SCH}_2); 3.68 (\texttt{s}, 2\texttt{H}, \texttt{SCH}_2); 4.15 (\texttt{s}, \texttt{I}, \texttt{H}, \texttt{HC} \in \overset{\texttt{S}}{\$}); 5.43 (\texttt{s}, \texttt{IH}, \texttt{CH-S}); 6.75-7.35 (\texttt{m}, \texttt{15H}, \texttt{aromatic}) ppm. \\ \underline{\mathsf{13C-NMR}} (50.3 \texttt{MHz}) & \delta 19.98 (\texttt{SCH}_3); 36.43; 36.50 (\texttt{SCH}_2); 52.19 (\texttt{C} \in \overset{\texttt{S}}{\$}); 66.74 (\texttt{C} -\texttt{CSSCH}_3); \texttt{126.77}; \texttt{126.87}; \texttt{127.94}; \texttt{128.12}; \texttt{128.43}; \texttt{128.49}; \texttt{128.83}; \texttt{128.88} (\texttt{CH}, \texttt{aromatic}); \texttt{137.41}; \texttt{137.61 (benzylthio C}_q); \texttt{138.16 (C}_{6}\mathsf{H}_6, \texttt{C}_q); \texttt{233.56 (SC=S) ppm. } \underbrace{\texttt{MS m/e}}_{\texttt{M}=\texttt{426 (M}^+-\texttt{SCH}_3); \texttt{322 (M}^+-\texttt{CSSCH}_3); \texttt{292 (M}^+-\texttt{H}_3\texttt{CSC-CHC}_6\mathsf{H}_5). \\ \underbrace{\texttt{Anal.:}}_{\texttt{S}} \texttt{Found for C}_{24}\mathsf{H}_{24}\mathsf{S}_5; \texttt{S}; \texttt{34.08}. \\ \texttt{m.p. 106-107}^\circ. \end{aligned}$

<u>Preparation of 6a-c</u>: Compounds 2a-c were heated with excess of 1,3-butadiene in benzene at 80-100^o in a sealed tube for 12h. The solvent was evaporated, the residue was chromatographed using hexanes-CHCl₂ 8:2 mixture as eluent.

 $\begin{array}{l} 1,1,2-\text{Tris-methylthio-6-methyldithio-hexa-1,42-diene <u>6a</u>.Yield: 74.8 %. <u>H-NMR</u> (200 MHz) & 1.99 (s, 3H, SSCH_3); 2.37; 2.40; 2.41 (ss, 9H, 3xSCH_3); 3.04 (m, 2H, H-6,6'); 3.50 (m, 2H, H-3,3', J_{3,4}= 5.0 Hz); 5.57 (m, 2H, H-4,5) ppm. <u>1³C-NMR</u> (50.3 MHz) & 14.14 (SCH_3); 18.25 (SCH_3); 35.20 (C-6); 36.76 (C-3); 127.71; 129.21 (C-4, C-5); 135.28 (C-1). 140.14 (C-2) ppm. <u>MS m/e</u> 298 (M⁺); 251 (M⁺-SCH_3); 219 (M⁺-SSCH_3). <u>Anal.</u>: Calc. for <math>C_{10}H_{18}S_5$: S, 53.70; Found: S, 53.40.

 $\frac{1,1-\text{Bis-ethylthio-2-methylthio-6-ethyldithio-hexa-1,4Z-diene}{1} \frac{6}{2} \text{ Yield: 65.3 \%.} \\ \frac{1}{1+\text{NMR}} (200 \text{ MHz}) \delta 1.26 (t, 9H, 3xCH_2CH_3); 2,50 (q, 2H, SSCH_2CH_3); 2.88 (q, 4H, 2xSCH_2CH_3); 3.10 (d, 2H, H-6,6'); 3.57 (d, 2H, H-3,3'); 5.60 (m, 2H, H-4,5) pom. \\ \frac{13}{2} \text{C-NMR} (50.3 \text{ MHz}) \delta 14.39 (SSCH_2CH_3); 14.60; 14.66 (SCH_2CH_3); 18.49 (SCH_3); 24.61 (SSCH_2CH_3); 29.46 (SCH_2CH_3); 32.94 (C-6); 37.13 (C-3); 127.72; 129.80 (C-4, C-5); 137.32 (C-1); 138.06 (C-2) ppm. <u>MS m/e</u> 340 (M⁺); 279 (M⁺-SCH_2CH_3). <u>Anal.</u>: Calc. for <math>C_{13}H_{24}S_5$: S, 47.07; Found: S, 47.43.

 $\begin{array}{l} 1,1-\text{Bis-benzylthio-2-methylthio-6-benzylthio-hexa-1,4Z-diene} & \underline{6c} & Yield: 42.2 \ \$. \\ \hline H-NMR & (200 \ \text{MHz}) \ \& 2.20 \ (\texttt{s}, \ 3\text{H}, \ \text{SCH}_3); \ 2.92 \ (\texttt{d}, \ 2\text{H}, \ \text{H-6,6'}); \ 3.33 \ (\texttt{d}, \ 2\text{H}, \ \text{H-3,3'}); \\ \hline 3.60 \ (\texttt{s}, \ 2\text{H}, \ \text{SSCH}_2C_6H_5); \ 4.05 \ (\texttt{s}, \ 4\text{H}, \ 2\text{xSCH}_2C_6H_5); \ 5.48 \ (\texttt{m}, \ 2\text{H}, \ \text{H-4,5}, \ J_{4,5} = 5.0 \\ \hline \text{Hz}); \ 7.2 \ (\texttt{m}, \ 18\text{H}, \ \texttt{aromatic}) \ \text{ppm}. \ \frac{13}{12} \underbrace{\text{C-NMR}}{(50.3 \ \text{MHz})} \ \& 18.45 \ (\text{SCH}_3); \ 32.51 \ (\text{C-6}); \\ 34.80 \ (\text{SSCH}_2C_6H_5); \ 37.07 \ (\text{C-3}); \ 39.68 \ (\text{SCH}_2C_6H_5); \ 128.01 \ (\text{C-5}); \ 129.35 \ (\text{C-4}); \\ 135.96 \ (\text{C-1}); \ 140.84 \ (\text{C-2}) \ \text{ppm}. \ \underline{\text{MS m/e}} \ 528 \ (\text{M}^+). \ \underline{\text{Anal.:}} \ \text{Calc. for } C_{23}\text{H}_{30}\text{S}_5; \\ \texttt{S}, \ 30.43; \ \text{Found: S}, \ 30.46. \end{array}$

Acknowledgments: This work was financially supported by the Hungarian Academy of Sciences through a grant TPB KKFA. The authors are indebted to the analytical laboratory for the elemental analyses and to Dr. Z. Dinya for the mass spectra.

REFERENCES

- 1. D.M. Vyas and G.W. Hay, J. Chem. Soc., Chem. Commun., 1411 (1971)
- 2. D.M. Vyas and G.W. Hay, J. Chem. Soc., Perkin Trans. I., 180 (1975)
- E. Vedejs, M.J. Arnost, J.M. Dolphin and J. Eustache, <u>J. Org. Chem.</u>, <u>45</u>, 2601 (1980)
- D. Seebach, K.H. Geiss, A.H. Beck, B. Graf and H. Daum, <u>Chem. Ber.</u>, <u>105</u>, 3280 (1972)
- H.O. Kalinowski, S. Berger and S. Braun, ¹³C-NMR Spektroskopie, Georg Thieme Verlag, Stuttgart-New York, 1984. p.188.
- 6. <u>ibid.</u>, p.169.
- 7. A. Bax, J. Magn. Res., 57, 314 (1984)
- 8. J. Houben and M.L. Schultze, Berichte, 44, 3235 (1911)
- 9. B. Holmberg, Berichte, 40, 1740 (1907)

2066